

Integrated CNS Architecture – Future Directions

Topic: What are the goals and requirements of a longterm integrated CNS Architecture

Art Feinberg and Chris Wargo, Co-chairs

Integrated CNS Architecture – Future Directions

- 1 What are the desired attributes of the long term ICNS architecture?
- 2 What are the key technical requirements of the longterm ICNS architecture?
- 3 What are the key technologies to focus on in developing long-term architecture candidates

Group Members

- Chris Wargo, CNS
- Art Feidberg. AMSI
- Gerald Chomos, NASA
- Brian Kachmar, Analex
- Paul Mallasch
- Noel Schmidt, ATC
- Mike Zernic, NASA
- Vincent Schultz, NASA
- Fred Messina, Raytheon
- Jocelyn Descaillot, SITA
- Richardo Parro, FAA
- Scott Remillard, Sensis

- Marty Pozesky, MTPA
- Kate Troop, Lockheed Martin
- Peter Harbath, Analex
- William Weiss, CSSI, Inc.
- Shigeki Masuda, JCAB
- Dan Williams, NASA
- Mitch Thomas, NASA
- Robert Zimmerman, Raytheon
- Mark Taylor, Avaliant LLC
- Paul Meredith, CNSA
- Mike Wedge, FAA
- David Underwood, Aviation Intl News
- Dave Olsen, FAA

Group Report

- Reviewed last year's session results for "revolutionizing CNS"
- Introduction of group members
- Overview of session
- Technologies capabilities do not require global standards
- Timeframe
 - Far enough out to influence long term systems
 - Involves two parts: target date and operational deployment
 - 2020 and beyond
 - Attributes includes standards independence
 - Aggressive thinking
 - 2010 system is deterministic (contracts in place)
 - Visualize architecture that takes advantage of technology
 - Think beyond current technology
- Architecture
 - Procedures, hardware, software are all part of architecture

Question 1

- 1 What are the desired attributes of the long term ICNS architecture?
 - Security
 - Flexibility (equipage, cost)
 - Universal avionics (like software based radio)
 - UAVs, GA, wide body
 - Differing service levels
 - Design Standards Independence
 - Use public standards
 - Use better standards makers
 - Software independent radio
 - Protocol independence
 - Better leveraging of off the shelf products
 - Utilizing recent IP technologies
 - Other systems (commercial, public infrastructure)
 - Leverage Military CNS
 - Dynamic Scheduling
 - Cost Beneficial
 - Higher ROI and higher rate of change
 - · Efficient use of equipment

Question 1 (continued)

- Business Side
 - Evolution
 - Concurrent evolution rather than serial
 - · Prevent integration problems
- Performance
- Better Distribution of Weather Information
- Interoperability not Common Standards
- System Perspective (early CNS integration, not vertical C,N,S)
- Wireless Infrastructure, not necessarily SAT, VHF
- Integrated but not related to Wireless, not tying together equipment
- Information integration (weather information, surveillance, etc.)
- Moving from air traffic control to management
- Self determined Air Traffic Management (Collaborative)
- Not necessarily totally autonomous (restricted air space, other users)
- Some flexible components get autonomy
- Could user use system autonomously without worrying about other users
 - Could use and get more performance
 - More freedom
- Achieve autonomy when practical

Question 1 (continued)

- Responsibility consistent with user's performance
- Not trapped in system that in the future components won't apply anymore
- Freedom, not complete freedom
- Technology is letting the pilot be "his own controller"
- Fully digital

Question 2

- 2 What are the key technical requirements of the long-term ICNS architecture?
 - Optimize channels for air to ground, air to air, etc. (minimize CNS links)
 - Integrate CNS functionality (network centric)
 - Situational awareness for all users
 - Networked with integrated displays
 - Sectors and classes refinement
 - CNS system that responds to dynamic sectors
 - Tools that allow communication loads, traffic loads (information loads) to be calculated for tests
 - User Intent
 - Part of situational awareness
 - Long term architecture that does not allow for single point failure
 - Redundancy
 - Diversity
 - Oceanic operation
 - Would not differentiate between ground or sea (global system)
 - Terrain independence (flexibility)
 - Transparent enough to work over different areas

Question 2 (continued)

- Real Time Information Sharing between all air space users
- Coverage for greater number of users and then migrate to everyone
- Delay has to appear to be zero or instantaneous to the user
- "Changing environment" vision
 - Expectation of better levels of safety
 - Better Efficiency
 - · Increasing capacity
- Responsive to future environment (Concept of operation)
- Maintains large number of ground base radars
- Surveillance for safety and security
- Integrate ground based and satellite based surveillance systems
- Fulfills security requirements
- Normalizing or reducing long term operational cost
- Right type of business case

Question 3

- 3 What are the key technologies to focus on in developing long-term architecture candidates
 - Secure Network technologies to support integration of CNS
 - Autonomic Systems (self monitoring, self maintaining)
 - Processor to interpret standards
 - Self configuring computers
 - Hybrid system engineering approach to integrate ground based and satellite based systems
 - Wireless broadband CNS implementation
 - Surveillance for backup and security
 - Non-cooperative surveillance system
 - May be ground based
 - Surveillance fusion
 - Integrated, universal display
 - Adequate situational awareness (virtual displays)
 - Protocols, Spectrum and Bandwidth research
 - Voice Synthesis and Response (voice recognition)
 - Ability to increase operability in all types of weather (make weather less of a factor of efficiency)

Question 3 (continued)

- Ability to increase operability in all types of weather (make weather less of a factor of efficiency)
 - Synthetic vision systems
- Closed width capture with total situation awareness
- Non-conforming flight objects decision support tool
- ILS (integrated logistics support), failure prediction system
- System engineering tools and processes to build system
- Aircraft tools integration
- Service availability in case of failures
- Better procedures
- Technology migration (software engineering)
 - Open system architecture
- Sensor improvements
 - New sensors
 - Order of magnitude improvements
- Minimizing Interference (RF)
 - Insuring GPS signal integrity